
AD-ABOS 357 BROWN UNIV PROVIDENCE R I LEFSCHETZ CENTER FOR OYNAM--ETC F B 12/1
ANALYSIS OF A PHASE-LOCKED LOOP AND A GENERAL FEEDBACK SYSTEM B-ETC(U)
OCT 79 H J KUSHNER. Y BAR NESS AFOSR-76-3063

UNCLASSIFIED LCDS-TR-79-5 AFOSR-TR-OO-OO- g NL

80



LC)S TR 79-580 08

IH. I. KUSHNER ANALYSIS OF A PHASE-LOCKED LOOP AND A 1 !
Y. BAR-NESS GENERAL FEEDBACK SYSTEM WITH A LIMITER

OCTOBER 1979

E id(

Diviion f ApeiesMa het Cet ron Dynamerial Systiems 21

0@4



UNCLASSIFIED
J S nUNiTYCLASSIFICATION OF THIS PAGE (*%on Data Entered)___________________

READ INSTRUCTIONSREP DOCUMENTATION PAGE BEFORE COMPLETING FORM
Z2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

1;09AFS TJI. 8 - 8_ _ _ _ _ _ _

A.TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

ANALYSIS OF A~ PHASE-LOCKED LOOP AN~D A GENERAL (jJ Interim r,--.
FEEDBACK SYSTEM WITH A LIMITER or SpRAaRMING O484RIPORT NUMBER

7. AUTHOR(*) -B. CONTRACT OR GRANT NUMBER(&)

H: J/Kushner -6 Y. Ear-Ness163

9. PERFORMING ORGANIZATION NAME AND ADDRESS -10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBEI S

Division of Applied Mathematics
Brown University
Providence, Rhode Island 02912 61102F A2 ;l

It. CONTROLLING OFFICE NANE AND ADDRESS 12 VJ II

L/ cvt~7 9)
Air Force Office of Scientific Research/NM .-V NUMBER OF PA61ESp-.
Boiling AFB, Washington, DC 20332 42 '/2-/ r-

14. MONITORING AGENCY NAME At AODRESS(il different from Controlling Offic0) 1S. SECURITY CLAVS. rof thts report)

UNCLASSIFIED

158. DECL ASSI FICATION/ DOWN GRADING
SCHEDULE

1S. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION ST. 4ENT (of *abstract entered in Block 20. It different from Report)

IS. SUPPLEMENTARY lrES

19. KEY WORDS (Continue on reverse side If necessary and Identify by block number)

20. ABSTRACT (Continue on reverse side If necessary and Identify by block num ber)

A phase-locked loop (PLL) with a hard limiter and wide-band noise input is
analyzed. A powerful method introduced in Kushner's *Diffusion approximations
to output processes of nonlinear systems with wide band inputs, and appli-
cations* for obtaining a close diffusion approximation to a system with the
limiter greatly improves the tracking and acquisition properties over the
classical PLL. This is demonstrated theoretically and supported by simulation
results. Similar results hold for a standard feedback control problem with a
limiter at the beginning of the forward loop.* The results are a clear

DD I ,A~. 1473 4T.i T A c!t'T rTY,,Na



UNCLASSIFIED
IqITY CL&ASSIFICATION 0F THIS PAGE(*bon Do(& Entered)

20.- Abstract Con't.-

'N7demonstration of the value of the new techniques of analysis which are
employed. The techniques are applicable to other communications systems
with nonlinearities and wide-band inputs.

V,

UNCLASSIFIED



ANALYSIS OF A PHASE-LOCKED LOOP
* AND A GENERAL FEEDBACK SYSTEM WITH A LIMITER

H. J. Kushner
Y. Bar-Ness

1. Introduction

Consider a (linear or nonlinear) dynamical system with wide-

band noise input. In communication theory, it is often of con-

siderable interest to approximate such systems by diffusion models

so that, e.g., Fokker-Planck and other "diffusion" process tech-

niques can be used. In [11, a general and powerful method for

doing this was developed. Roughly, the input noise process is

parametrized by c and as e - 0, the bandwidth (BW) goes to

infinity, while the power per unit BW approaches a constant. The

process which corresponds to the limit of the sequence of measures

of the output or system state processes {x (.)} is found by tech-

niques of weak convergence theory.

The method is particularly useful when the noise (and/or

signal) is processed nonlinearly. In order to illustrate the

method, three applications were developed in [i]: (a) a phase

locked loop (PLL); (b) an adaptive antenna array; and (c) output

of a hard limiter followed by a filter. Difficulties with some

of the heuristic methods were avoided. In fact, many of the more

heuristic arguments for problems (a), (b) use (implicitly or

explicitly) a "wide band assumption".

In this paper a very interesting and more difficult new

application, essentially a combination of (a), (c) above, is

1.1.
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iscussed. There is a well-developed classical theory of PLLs

[21, [3]. Recently, a strong practical interest in PLLs that use

either nonlinear filters or static nonlinearities has developed

14], [5] and there have also been prior indications (based on

simulation studies) that use of certain nonlinearities could

actually improve the loop's performance. The improvements in

performance that are possible with the use of a hard limiter type

nonlinearity will be demonstrated theoretically, via the method

of Ell, and confirmed by simulation. It seems to the authors

that there are no current alternative methods for the treatment

of such problems in a rigorous or readily rigorizatle but intuitive-

ly convincing manner. A number of interesting ideas and results

appear in [5], but the method requires an "equivalent white

noise" input, and would seem to have great difficulty (even with

a heuristic treatment) with the problem treated here. However,

the general conclusions of [5] are consistent with our own.

Our development will be rigorous in part and heuristic in

part. It is partly heuristic because we seek to simplify the

analysis to avoid some of the more onerous calculations. But

even there, the development will be guided by the intuition

developed in [1] for the properties of the simpler systems

treated there. The point is that, used even heuristically,

the method provides an interesting and powerful tool for getting

the appropriate diffusion approximations to many nonlinear
4

systems whose (even formal) treatment would be much more dif-

ficult by alternative methods.
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The results and method are also quite important in control

theory. There the filter and VCO would or could be replaced by

general linear or nonlinear dynamical systems and the multiplier

by an adder. In fact, for this case, our results are rigorous, and

indicate the important role which a hard limiter can play in improv-

ing a systems noise immunity when the noise is small but the bandwidth

is large.

We are concerned with the systems of Figures 1 and 2, the

first (resp., second) being a first- (arbitrary, resp.) order

PLL. By suitable choice of D, E, C, G in Figure 2, any zonal

filter can be well approximated. In Figures la, 2a we have a

hard limiter, and in Figures lb, 2b an approximation to a hard

limiter. nc(.) denotes the input noise, R (-) the estimate of

the "signal" phase 6(-) of the input signal A sin(w0t+8(t)). The

general type of approximation g (-) which is used for g(-), the hard

limiter, is graphed in Figure 1c. The treatment of the genera.l

case of Figure 2 is almost identical to that of the simpler

case of Figure 1; one only carries a few extra terms (which are

not hard to handle in the development). In the interest of

simplicity, derivations for the first-order case will be given;

the results for the general case will be only stated. The

results indicate some rather surprising and important advantages

of the use of the limiter; for small noise power, the acquisition

range and tracking ability are increased, and acquisition time

decreased, as compared with the case with no limiter. These

AL
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Kco(Wt+vt co Z* (t)

la. PLL with hard limiter

lb. PLL with approximate hard limiter

1c. Approximate hard limiter

FIG. 1, FIRST ORDER PLL
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[ FILTER

2a. General PLL with hard limiter

2b. General PLL with approximate hard limiter.
Same inputs as in Fig. 1

// /

FIG. 2, GENERAL ORDER PLL
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advantages are borne out by simulations, and have important

analogues in the automatic control problem also.

In Section 2 various _ssumptions are given and in Section 3

a result of [1] is applied directly to get a limit approximation

in a heuristic manner. The limit seems to capture the essential

properties, and it is compared with the comparable equation for

the classical first-order PLL. Section 4 discusses some simula-

tion results. The Appendix contains various parts of the detailed

development.

Note that it makes no mathematical or physical sense for

n (.) to be a white Gaussian noise. Owing to the properties of

white Gaussian noise, the output of the limiter would be zero.

So we must deal with a wide band input.

2. Assumptions

The noise model. For the sake of concreteness in the cal-

culation and in order to be able to use the results of [1],

Section 6, it is supposed that n (t) = y (t)/c where y (t) =

y(t/ 2) and y(.) is a stationary Gaussian process with correlation.
2

function a exp - alTI, a > 0. Reasons for this scaling are dis-

cussed in [1], Section 2 and in [6]. It is a convenient and

common way of getting a noise process r £ (.) whose spectrum

converges (as c - 0) to that of a white noise with a constant

power per unit bandwidth, namely 2a 2/a. It is, perhaps, the

simplest model that could be used for our wide band approxima-

m'w r-- ..
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tion technique. In order for nE() "white Gaussian noise" or
tnc(s)ds + Wiener process as e - 0, a contraction of the time

0
scale and an increase in the amplitude of y(-) is required (as

C + 0). This is discussed further in the reference. The partic-

ular form of y(-) was chosen partly for convenience, in that it

enables us to use an available result. Any Gaussian process

whose correlation function decreases exponentially can be used,

but the /2 ln 2/a coefficient in (3.1) and in derivative expres-

sions would be replaced by a different coefficient although the

general result of the sequel (the improved tracking ability for

small power per unit BW with the use of the limiter) would remain

true.

In the classical case (e.g., [2, 31), a somewhat similar "limit"

assumption is made; although the noise nE (-) is not explicitly

parametrized, and no limits are explicitly taken, in the various

approximations which are made it is implicitly or explicitly assumed

that the BW is "very wide" (this assumption is used in an intuitive

or formal way only, in the classical case). For the system without

the limiter, much weaker assumptions on n E(-) can be used [1] without

over-complicating the development.

The scaling L . If L = L, a number not depending on c,

then a heuristic "averaging" type of analysis implies that the

"effective gain" of either the L g(.) or Lg (-) nonlinearities

goes to zero as e - 0 (or, equivalently, as BW ). Thus in

any "limit" analysis, L5 must increase as c decreases. In any

particular practical system, operating in a fixed signal and noise

environment, one particular value of L = L will of course be used.

Other things remaining equal, as the BW of the input process in-

creases (without the power per unit BW degenerating to zero, in
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the "pass band"), this value of L will have to increase. How this

value is to be chosen in any particular application is not impor-

tant here. What is important is that EL must converge to a

constant L > 0 as e - 0. (See Appendix.) This property holds

if y(.) is any stationary Gaussian process. So L, = L/E will

be used in the limit analysis. If ELC - 0 as c - 0, the limit

system will be an open circuit.

3. A Heuristic Analysis

Consider the system of Figure la. In 11], Section 6, the

limit equation (as e - 0) for the output process xE (-) of a hard

limiter of level L with input s(t)+nE (t) (s(-) being piecewise

continuous, but arbitrary otherwise - it is an input signal) ia

derived. The limit process has the sanme distribution as the diffusion

(3.1) dx = L/2/7 s(t) dt + L/2 ln 2/a dB,
a

where B(-) is (and always will be in this paper) a standard

Wiener process. The following heuristic derivation, for which

greater justification is provided in the Appendix, captures the

essential effects.

At point (a) of Figure la, the signal is

(3.2) KA sin(w0 t+(t))cos(0t+6S(t)) + K cos(w0 t+8 (t))n (t)

aC (t).

Interpret v/IvI = 0 if v = 0 (let sign 0 = 0 for definiteness).
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At (b) in Figure la, we have

(*) z (t) = 6 (t) = signJaC(t)/Icos(w t+C(t))I].

Supposing that the B6() variations are "slow" compared with those

of nE(), drop the 6E(. terms in the noise coefficient

C tC(t))/Icos(w0t+6C(t))I of the argument of the functionn(t) cosw ( t+80n

on the right side of (*). This is the main simplifying assumption

and will be discussed further below. There is no need for this step

if the multiplier in Figures 1 or 2 is replaced by an adder (what-

ever replaces the VCO) as in the control problem. The noise term

in the argument of the function on the right side of (*) is now

sign(cos W0t)nE(t). On substituting t/C2 - t, this becomes

sign(cos w0 2t)-y(t)/e. For small c and over a finite interval,

the statistics of this process are essentially those of y(.)/c.

As will be seen in the Appendix, it is the statistics in the new

scale which determine the correct limit. Thus, since we are con-

cerned with small e, this suggests that the sign(cos w0c2 t) term

can be replaced by unity without altering the limit. Finally,

making these substitutions we have the formal approximation:

sign(aC(t)) % sign VA sin(w 0t+o(t))sign(cos(w 0t+81(t)) + y (t)/C]

sign(s C(t) + y C(t)/c],

where s (.) is defined in the obvious way. With this approxima-

tion at point (b) in Figure la, we have
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C ~ L C

(**) z(t) = (t) = sicn[s (t) + y (t)/l.

AA

Next, ignoring the fact that sc(.) depends on 6c(-), and formally

using the limit result (3.1), yields that the limit (as c - 0) of

{ 8 E(.)} has the same distributions as the process e(.) given by

(we replace the 0e(. inside the sign by the "limit" 8(.) also)

A sin(w0 t+O(t)) sign[cos(w0 t+e(t))]
(3.3) do(t' = LvrFr dt

aa+ L -dB.

Greater justification for the limit representation (3.3) will be

given in the Appendix. Equation (3.3) has a unique solution (in

the sense of measure), despite the discontinuity [8]. Also, the

argument concerning setting the sign cos(w0 t) term equal to unity can

be justified in the sense that it does not affect the limits. The

limit (3.3) can be justified if we start with (**), use the approx-

imation g (-) instead oft g(.), and then let a - 0 as c - 0. See
a

the Appendix. The main difficulty lies in ignoring the 6€ depen-

dence of the coefficients of nc(t). This dependence gives rise to

what is usually called the "correction term", an additional drift

term which should appear in (3.3). Purely formal calculations sug-

gest that this term "oscillates with w0 ' and that it would average

out if either w0 is large or a narrow band filter is used, as in

Figure 2. This is, of course, what happens to the correction term

tThe reason for the use of the approximate hard limiter g,(') in

the analysis in the Appendix is that our approach requires a differ-
entiable nonlinearity. In the Appendix, we get the limit when c
0 and a - 0 as c - 0. This is a reasonable point of view.
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in the standard case [1, Section 4], but here we are not yet able

to explicitly evaluate this term.

3.1 Approximation of (3.3). Let us now approximate (3.3) by

a simpler system. The justification of the approximation (for

large w 0 ) appears in the Appendix. First expand q(a) - sign(cos u) =

k=l qk cos ku over -,,where q = f f f(u) cos ku du =
0

(4/wk)sin kn/2. Thus q~k 0, all k, and

4 1_-ik _
sign(cos(w0 t+e)) - k- (2k+l) cos(2k+l)(w 0 t+6)k-0

and

sin(w t+e)q(w t+(). (4)i [sin(8_-)+sin(2wot+0+6)]

OD k
4. 1 (-1)+ sin(w 0t+e)l .) cos(2k+l)(W0t+0)

- 2(sin(e-0)) + F(w 0 ,t,E,8).

Now, we can take either of two approaches. The simplest is

simply to assert that F, which contains the "high-frequency" terms,

will be filtered out. An alternative, which is developed in the

Appendix, is to use the averaging method of [1] (see Section 4

there) again, but where the 6(.) of (3.3) is now parametrized

by w0 and to show that, as -0 , the 0(.) converge weakly

(in C[O,w); see Appendix) to the solution of the "averaged

equation"

~ L
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3/iAsi

(3.4) do = L( 3/2 A sin(O-0) dt + dB.71a a

Equation (3.4) is the desired limit equation. Suppose, for

purposes of representation, that 6(-) is differentiable. Then,

with =

(23/2 A sin dt _F___

(3.5) do =dt - L(-) t - n dB.
7 a

See Appendix 3 for the details.

The general filter case. The case of Figure 2 can be

dealt with similarly, to obtain

[A 2 3/2si dBin(3.6) do = Odt - Cvdt - LG- 23 / dt +d

A 2 3/2 2 in 2
dv = Dvdt + LE[j(j) sin odt + dB].

3.2 Limit equations for the classical case (no limiter). For

comparison purposes, only the first-order case will be studied.

The classical derivation appears in [2], [3]. A derivation of the
+P

limit as input BW - - (an assumption also made for the classical

derivation) is in [11, Section 4. In that reference, nE(- was a

more general process than used here. Specializing to the nc(.)

used here, we have [1, eqn. (4.3)]: For fixed w0 , ( =

converges weakly (in C[O,o)) to the solution of the

diffusion equation

J
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AK

(3.7) dcOt) = O(t)dt -- [sin (t) + sin(O(t)+6(t)+2w t)]dt

+ a- cos(w0 t+6(t)) sin(wCt+O(t))dt

- K 1 acos (W0t+6(t))dB

As w '  (') (parametrized by w0) converges weakly (in

C[O,-); see [1]) to the solution of

(3.8) d= edt - sin dt - K- dB.2

The third term on the right of (3.7), the so-called "correc-

tion" term, arises due to the non-independence of nE (t) and e (t).

The classical derivation ignores this dependence. But, as w0 *- O

the term is "averaged out", whether or not a filter is used in the

PLL. In fact, by our neglect of the 6c dependence of the coef-

ficient of nc(.) in the argument leading to (3.3), the correction

term does not appear.

3.3 Comparison of (3.5) and (3.8). L in (3.5) plays the

role of K in (3.8). The salient and surprising difference

concerns the role of a. In (3.8), it affects the noise term

(proportionally). In (3.5), it affects the drift term (inversely).

It is thus expected that for small a, the limiter would improve

the acquisition and tracking properties of the PLL.
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Let 0 = Wi. a constant, and linearize the sin in both (3.5)

and (3.8) about ¢ 0. Then the asymptotic (linearized) mean

"2square values E(0-0) are

(3.9) (limiter (3.5)) w2 ()3 a2 + L (ln 2) 3/2 a
L A

o2 o
= 3.87 --. + 1.36 LoL2A2 Aa

2

(3.10) (no limiter (3.8)) 421 + Ka
K2 A2 Aa

The major shortcoming of the first-order system with no limiter is

its poor acquisition ability, irrespective of a, a shortcoming

which the use of the limiter overcomes when a is small, and the

bandwidth large. The same relative advantage holds for the general

case of Figure 2, as we can easily see from (3.6).

3.4 An alternative heuristic development. In order to gain

some intuitive feeling for the effects of different approximations

of the input to the limiter, let us now suppose that the input

(3.2) to the limiter is replaced by the "natural approximation"

(not always so natural in the nonlinear case)

AK C
(3.11) -- sin (O(t)-0 (t)) + !_ nc(t),

where we get the /_2 by "averaging" the square of the coefficient

of n (") and then taking its square root, while ignoring the coef-

ficient's O6 dependence. Then, by using the argument which led to

(3.3), we get the limit equation

M-UROM
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(3.12) d = udt - AL sin dt - L in 2 dB.
~ a

The ratio of the drift coefficient in (3.5) to that in (3.12) is

2V2/R = 0.9. Thus, the process (3.12) would be expected to have

smaller errors - but not by much - and, otherwise, the same

qualitative properties as (3.5) has.

3.5 An automatic control problem. The results are directly

applicable to the typical feedback situation of Figure 3. s(')

is the signal or informational component in the input, n (.) is,

again, the wide-band noise of Section 2 and F(-) and G(.) are

smooth functions with at most a linear growth rate. The same

formal argument which led to (3.3) yields (no dropping of the

6 (.) in the noise coefficient is required, as was done in the PLL

case in order to get (**) there) that {vC(.)} converges weakly to

the solution of

LD~s ( t ) + G ( v ) )  t 21 in 2dB
(3.13) dv = F(v)dt + LD --- d a dB

The 1/a effect in (3.13) would seem to be a rather impor-

tant result. The result is not entirely expected and undoubtedly

has many useful applications to control problems when the noise

is small in power per unit BW, but of wide BW. For this problem,

the method in the Appendix rigorously justifies (3.13).



G(vrL)

FIG. 3, THE AUTOM4ATIC CONTROL PROBLEM
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4. Simulation Results

The main purposes of the (digital) simulations were to verify

the effects of the 1/a in the drift term of the limit equation

for the "hard limiter" case, and to get some rough idea of the

"rate" of convergence to the limit, as well as a rough comparison

with the case of no limiter. Consistent with these goals, and

in order to avoid (time-scale and length of simulation) problems

in simulating either (3.3) or the original system with the w

present, we simulated the simpler cases of Section 3.4, where

(3.11) appears at the limiter input. Typical samples of the results

appear in Tables 1 and 2. The quantities are sample means and

variances over a 300 time unit interval.

Discussion. From Table 1, it can be seen that the limit

equation results are very close to those of the actual systems.

The results are closer for the no-limiter case, and for the larger

value of a. The presence of the limiter nonlinearity seems to

slow down the convergence. (Of course, even without the limiter,

the system is nonlinear, but "more softly so".) The quality of

the tracking ability is demonstrated by Table 2. For E < 1/2,

the actual system performs quite close to the limit system. It

is remarkable that even for larger values of c, the performance

with the limiter can be more favorable (than that without the

limiter) than suggested by merely comparing the true limits.

The relative contributions of the means and variances are

,t --' • [i
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(qualitatively) exactly as expected. The decrease in mean square

error as a decreases, as suggested by the 1/a factor in (3.5),

is clearly demonstrated by Table 2. As noted above, the useful

effect of the limiter (as quantified by the 1/a factor in the

limit equation) is very clear, even for e = 1. Owing to the fact

that the maximum slope of sin u is at u = 0, the actual data are

all smaller than those predicted by (3.1) (and the appropriate

analogue of (3.8) for the system (3.12)).

The linearizations (3.10) and the analogue of (3.9) for the

system (3.12) give conservative estimates of the numbers in the

tables. This is because the linearization results are obtained

by replacing sin * by * in the dynamics, a "stabilizing" change.
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No limiter Limiter

sample sample sample sample
mean variance mean variance

o = .5

limit .11 .30 .06 1.0

C = 1 .11 .20 .02 .38

C = 1/2 -.04 .27 .02 .82

o = .25

limit .05 .068 -.07 .40

C = 1 .05 .046 .05 .12

c = 1/2 -0.2 .062 -. 02 .23

Table 1. First-order loop, 8(t) = 60, a constant.

. 1 
__%R
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No limiter Limiter

o=1/2

sample samnple
sample sample mean square sample sample mean square
mean variance error mean variance error

limit .59 .46 .81 .26 .95 1.02

C = 1 .62 .24 .62 .15 .47 .49

c = 1/2 .58 .58 .84 .23 .91 .96

a=1/4

limit .55 .060 .37 .14 .34 .36

C= 1 .54 .045 .33 .086 .10 .10

c - 1/2 .57 .07 .40 .12 .26 .27

c= 1/4 .14 .29 .31

Table 2. First-order loop, e(t) 0 (0) + t/4.
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Appendix 1: Simplifying the Problem

Modifying the problem. The given problem will be modified

in several ways, some insignificant, and Theorem 1 of [1] applied

to illustrate the type of argument required to justify the limit

equations. First, owing to mathematical necessity, we must work

with a smooth but arbitrarily'close approximation to the hard limiter.

I.e., the system of Figure 1 will be used. The object is to show

that the diffusion approximation is arbitrarily close if c is

small and g is close enough to a hard limiter. When we discuss

limits as c - 0 and a - 0 (i.e., as BW and g (-) hard limiter),

we mean that c - 0, a - 0 simultaneously with c - 0 "sufficiently"

faster"; in particular that / /a - 0 as c - 0. This particular

ratio is due to the method used and is probably not generic in any

sense. g () is required to have a continuous first derivative,

which is bounded by C/a in [-a,a] (the derivative is zero out of

this interval), where C always denotes a constant, the value of

which may change from usage to usage.

Let y0(0) denote a stationary Gaussian process, independent

of y(), and with covariance o
2exp -at. Define y0(t) = Y 2(t/C2

and nC (t) = yc(t)/c. In order to "smoothe" the sign(ces) in
00

(3.3), we add Kn(*) to the signal at the input to the nonlinear-

ity. The process Kn0(-) converges to a white Gaussian noise with

spectral density aK 0/a as e - 0 and (as will be seen) has neglig-

ible effect on the result when 2 is small. So the modification

is harmless and is mainly for mathematical convenience.

With this addition, the input to the nonlinearity qa . is

k
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(Al) a -0 t KA sin(w0 t+O(t))cos(W0t+OE(t))

+ K(cos(W0 t+ee (t))fn (t)+KnF (t).

Two additional alterations will be made, the first one harm-

less and merely for convenience in the analysis, the other more

important. Define M(t) = [o0 + 2Cos2(W 0t+O it))]-/ 2 /K and write

(A2) £(t) =L (SE n

A~ Ea
(A2 6 g) [a Mta0 ( t ) ] + 6g (t),

where

6gO (t) = g (a ) (t))-g (0C M a ) ( t ) ) .

Owing to the positiveness of 6E (.), 6ga (t) 91 0 only when the argu-

ment of g (-) is less than some Ca in absolute value. The proper-

ties of y(.) and y0 (
") imply that there is a real C such that

E16g_ (t)I < Cae. Partly due to this, the deletion of the 6g (-)

in (A2) does not affect the limit, and we drop the term from (A2).

We now have the system 0 = Lg ( (t)a0(t))/. For the
a 0

final alteration, note first that the noise term in the argument
is j2+02c ~ E 1/2 ^ t)Ylt

of ga(-) above is 0  0 o t+ cos( t+8(t)

+y0(t)]. Change time scale t/e2 - t. As will be seen, the

calculations which concern the shape of the limit are in the new

time scale. In this scale, the noise term is

-[a 2 t+a -cos(WC (Et) 1/[cos(W0 C
2 t+e^ C 2 t))y(t) + y3 (t ) ] .

C. . . . . ..
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If O€(. does not become "too wild - too fast" as e * 0, then

for small c the term has essentially the properties of a station-

ary Gaussian process y(.) with mean 0 and covariance eat: and

we replace it by such a process. Such a facile argument does not

justify the replacement (for the PLL case).

2
Dropping the w t part is unimportant and does not affect

the result. Dropping the 0 dependence is important, because it

eliminates the correction term. Even without this alteration,

{0£(-)) can be shown to be tight* in D[0,w), but the details are

quite lengthy and will not be given. The main probler. (apart

from the length of the calculation) is that we have not been able

to get a nice expression for the correction term. However, some

formal and rough calculations suggest that its deletion does not

substantially alter the system's main qualitative properties, and

that the effects of the deleted term are small for large w0 " __-

In the control theory problem of Figure 3 where the multiplier

is replaced by an adder, the input noise is not multiplied by a

state-dependent function at the input, the actual value of the

input to the nonlinearity can be used in lieu of (Al) and there is

no need to drop any terms. Our method is then rigorous.

Finally, the system to be analyzed is

(A3) (t) ga(s(te(t)) + y

*The terminology is that of weak convergence theorF(Biliisley
[7]). DCO,) is the space of real-valued functions which have left-
hand limits and are right continuous, and which has an appropriate
topology. By tightness, we mean that the measure that { (.}
induces on D[0,) are Weak* sequentially compact. Later we use
C(O,T] and C[o,=), the spaces of real-valued continuous functions
(on [0,T] or [0,)) with the sup norm topology.

*1 1
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where y~ (t) = y(t/C2 ) and s(t,e6r(t)) = A8(t)sin(w0 t+ 8 (t))

cos (W 0t+e (t)).

Appendix 2

Derivation of the limit (as c 0, a 0) of the processes

{ 0 E(.)} of (A3). Theorem 1 of [1] will be applied and most of

the details of the following proposition will be given:

{E(-),cO,a-o} is tight and as a - 0 and e - 0, e(-) converges

weakly% to the process 6(.) satisfying the diffusion equation

(we set L = 1 for simplicity; the limit is linear in L)

At s(te(t))dt 2 ln 2 dB,
(M4) d (tW A t +A a

where

^ 2 2 A -1/2

s(t[e) a 0+C0+ cos(W 0t+8)] [A sin(w 0 t+e(t))cos(w 0t+e)].

Then, in Appendix 3, it will be shown that as a0 - 0, the solu-

tion of (A4) converges weakly to that of (3.3) and as w0 ) '

the solution of (3.3) converges weakly to that of (3.5).

In D[OG). Even though tHe paths are all continuous, it is con-
venient and traditional in the proofs of the basic theorems to as-
sume that they are elements of a space of discontinuous functions
D[0,c). The reason is that the weak* sequential compactness of
the associated measures is easier to prove there. This is purely
for mathematical convenience and need not trouble us. Of course,
the measures are concentrated on any measurable set in D[0,)
which contains the continuous functions.

I _ _ _ _ _ _
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The method. The technique is close to that of [1, Section

6], the main difference being due to the fact that our gu (.) is

not a limiter and that s(t,O ) has &I dependence. We briefly recall

the definitions (from [1]) of A and p-lim. Let Et denote

expectation conditioned on {y c(u), u<t} = {y(u), u<t/e2 }. Let

Cf (-) be (progressively measurable) functions of y£(.) such that

suptElfe(t) l < w and ElfC(t) l - 0 as e -, 0, each t. Then we

6say that p-limC f = 0. We also say p-lim f6(-) = 0 if for each

6 > 0, f6 (.) is a (progressively measurable) function of jc(.) and

e (-), and supt, 6Elf (t)l < - and Ejf (t)l - 0 as 6 0. We say

that fC E (AE) and ACf E = q C if

E Cf C (t+S) _rC(t)
p-lim t - qE(t)] = 0

6'0 6

and qC (.) is p-right continuous. See [11 for more detail.

Let _0,3 denote the space of real-valued functions on

R x [0,-) with compact support and whose first three x-derivatives

and first t-derivative are continuous. By Theorem 1 of [1], in

order to prove the proposition, we need to prove tightness of

{6£-, 0 0 and for each 1,. E I3
^C(a f c f(.)(- - , we need find a sequence

fC(.) E 9(AC) such that

p-lim [fE(.) _ f(6 C(.),.)] _- 0
£40

(A5)

p-lim [AfC(.) - (f +0,

a 0
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where A is the infinitesimal operator of the diffusion (A4). As

in [1], we will get f5 (-) in the form f5 (. = f(W5 (.),.) + fl(t) +

f(t) ,where the f4 will be defined below. Yirst the fE(.) will

be found, then tightness discussed. Even without tightness (A5)

implies that the finite-dimensional distributions of (A3) converge

to those of (A4) [1, Theorem 1].

Step 1. By the stationarity and distributional properties

of j(') and uniformity in s in bounded sets, we have

SE gu (s+ , (t/O) 1[{()-sc)P 0<c-aI+OEI/C a

=+ 0 0a + 0().

From this we can see the necessity of the LC = L/e scaling

Step 2. Fix f(-,-) E W0 Then (subscripts x, t on f(.,-)

denote the derivatives with respect to the first and second argu-

ments, resp.)

(A6) Af(&e(t),t) = ft(6e(t),t) + f x(6(t),t)g (s(t,&(t))+y4I(t)/E)/r

Continuing to follow the method of [1], fE( ') is to be introduced

in a way that allows "cancellation or averaging out" of the i/E

term in (A6).

Define the centered function (the expectation is over y(O)

AConly, e is considered to be a parameter here) g (.) by

A E e5 A5 Ct/)-g(~,

i(00 ,t,y(t)/e) = ga(s(t,8 )+yC(t)/e)-Eg (s(t,8 )+y(O)/e).

. . .. . . .. .



-27-

Now, define fl (") by fl(t) =f'( t (t),t) where

1 1E 1

fl(,t = ' f'~+~g(~+~E~~)cd

0
oo

E C Jtf (Ot+£: T)g (6,t+£- 2-,(L +tr)/F)dT.

0

Note that p-lim 0 fl( ' = 0, owing to the centering about the

mean, and the exponential correlation of the Gaussian process

y('). In fact, it will be shown that it follows from the estimate

(A7).

aT/2
(A7) on the set {IY(o0)l<11 or even on {1.J9(0).I<ea/;

-a1lr
jP{y(T) FB y(0)1 - P{j (t) C-.B}f < Ce for sorne

aI > 0, uniformly in B. Th_e 0 an_d T arguments of

can be replaced by t and T+t, resp. Similarly,

f or T2 >  > 0,' IP{ Ci Bi, i=i, 21(0)})- P{yi (Ti) 4EBi,

i=1,2}1 < Ce for some a1 > 0.

In the sequel the values of the constants a > 0 and C may

change from usage to usage.

To show (A7), we note that (j(t),y(0)) are Gaussian with mean

zero and correlation exp -at, and compare the two distributions,

the first of y(T) (or j(T 1 ),Y(T 2 )) with initial condition y(O),

and the second the stationary distribution of j(T) (or of (1 ) ,y(t 2 )).

t J

I +
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II Estimate IA7) implies that Ifl(t)I = 0(E) uniformly in w on

{IyE(t)1<l} (the integrand of the second expression defining fl(.)

goes to zero exponentially on that set by (A7)). Define vI =

min{T: e-aT/ 2 1e(t)i<I}. Write

fl(8,t) = E E BdT + f E Bd,

0 v

where B is the argument of Et in the second expression above for

Ef1(6,t). The first term is bounded in absolute value by eCv I and

the integrand of the second by C exp -a (T-Vl), which is inte-

grable. Thus

(M8) Jf1:(t)J < CE[l+v 1

< Cc[l + max(0, logl (t)D)],

which justifies the p-lim assertion above. To see how a mixing

condition such as (A7) can be used to get bounds on functions

such as Et F(j(t+T)) for bounded measurable F(.).satisfying EF(j(t))

- 0, in more general cases, see [9, Lemma 1].

Step 3. It can be verified that (for some version, as always)

f E 9(A) and that

4 U,
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WA) Af(t M f,~( (t) t) g (0 (t),'t'y (tM)/0

+ dT E [f (0(Yit),t+T)g (0 (t),t+-r,y(t)/]

0

The ~ ~ ~ E fis temo ^f()=Afc(0£(t),t) is (loosely) the com-

ponent of the derivative with respect to t, when e£ (-) is held

constant, and the second term contains the contributions to the

derivative due to the 0 (-) variations only. The (non-mean)

part of the first term on the right cancels the second term of

(M6). This is why f C(-) was ceefined as it was.

The second term of (A9) has two components which, after a

change of variable tr/e 2 - , can be written as (ia~ denotes the

derivative of 9,,(-))

0

ga (S(t,e C(t))+Y(t/c 2 )/C) +

+ dT E Cf (6O'(t)tt+E 2 T)g (0^E (t)t+ 2 ,-t + Tl/C)

0

9 a S~t~^ ())+jt/E2)/:
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Step 4. Both terms in (AIO) exist by the same arguments which

lead to (A8). We wish to show that the second term of (AIO) is neg-

ligible, as well as vet an estimate which is useful for the tight-

ness argument. The fact that the support of g1 ,,x(.) is in [-a,a]

And that Ig (x)l < C/a and the uniform boundedness of s(t, C(t))

will be used heavily. Let I Al denote the indicator function of

the set A.

By the use of (A7), it can be verified that (the bounds

below are uniform in s in bounded sets)

-t aT/2}C.
(All) IEg_ (s+y- + T)/c) I < [exp -ajT + I{ijE(t)I>ea/]C/.

We need a bound which goes to zero as c 0. Proceeding to get

this, we have

(A12) Pt l Sy'(L- + )i/CI < -E ( t ) --y0J =oc

uniformly in 1y0 1 > 1 and T > 0.

The estimate (A12) and the fact that the support of g ax (.) is

in [-ac] and that it's bounded by C/a yield that the left side

of (All) is also bounded above by O(c), uniformly in Iij(t) I > 1,

T > 0. This and (All) yield that on the set Ii€(t)I > 1 the left

side of (All) is bounded above by

(A13) [exp -a1T + i{Iic(t)I>eaT/ 2}]i/2 C(c/t)1/2 .

Note that lxi~ a, lxI < b imply Ilxi </
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Integrating (A13) with respect to T in [0,-) and noting the bound-

edness of g a and fx yields the upper bound

Ctl + max(O, logj6C(t)W)] (c/a) 1 2

on the second term of (AlO) when Ikc(t) I > 1.

In order to get a suitable bound for the case Wjl(t) I < 1,

split the integral of the second term in (Al0) as

0 e

The f is clearly O(E/). For the other term note that for T > C,

the density of y(L + e), conditioned on any value of 1I(t/c 2)

in [0,1], is < O(i/Il). Thus (A12) holds in this case (t > c,

1j(t/c 2) I < 1), but with O(a) replaced by O(a/-). Again, combin-

ing these estimates with (All) yields that the left side of (All)

is bounded above by (A13) also when (1k C(t/C2)H < 1), but with

( /2 relcd 1y/4 1/2( 1/2 replaced by /a Integrating the bound with res-

pect to T in [0,-) yields the upper bound to the second term of

(AlO):

(A14) Cfl + max(0, log Elt))D

Clearly p-lim (second term of (AlO)) = 0.
£-a00
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Step 5. Turning our attention to the first term of (Al0), it

will be "averaged out" by use of a f2('). This "averaging out"

will give use the second-order term of the operator of the 
limit

process. Define A0f(O,t) to be the expectation of the first term

of A0) when 0 (t) is replaced by the parameter 0. Using the

stationarity of (-), we have

00

A- f(6,t) = f2 -

0 fx(et+ Tga (~t TY(T)/E;)g a (s(t,e)-(O)/s)dT
0

= e E fxx(e,t+T)g l6,t+h t Y (t+T))g ls(t,6)+y( )/E)dT.
F f 

E

0 oDefine f2~t (--f--) )) • by

Note that when v = 0 the inner {} term {F lt)1 is just the first term

of (AlO) (with a change of variable) minus its exponentiation and with

22 2

e5 (It) replaced by . By a change of variables T/E 2 
- T, v/s2 - v, and

an application of (A7) similar to thtused to get the bound on I fllt)I,

we get that the inner integral FE (t4-v) exists for each v. We will

soon show that the double integral exists. Define

S (,t,t,v) = fxx(-,tfc2t+v)

2 2 0 2

W~~ repla etby T6. vBy(caneo +T variable (s t/E-Tc-v n

an~ ~ ~ aplcto£f(7 iia ota sdt e h on ni l
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An alternative representation (using the above-mentioned change of

variables) of f2(6,t) is

(A16) C 2 dv dt[E H (O,t,T,v) - EH£ (O,t,T,v)].

0 0

Denote the integrand by E B. The inner integral still exists, of

course - we o:.ly changed variables. Recall vI =

min{v: e-av/ 2 1i(t/c 2 )I<}. Write the last integral as

2  dv dT EtB + C2 fdv dT EtB = II + 1.

v1  0 0 0

Let us now evaluate II. By (A7) and the definition of vI,

the absolute value of the integral in II is bounded above by some

C exp -a1 (v-V1 ), a1 > 0. Also, IE H (6,t,T,v)I < C exp -alT

for some a1 > 0. Furthermore, by (A7) and v > vI, and for some

C > 0, a1 > 0 (whose values may again change from usage to usage)

IEt HC (O,t,T,v)l < EtIE 2T,v)I

t'/P I H (,t
t+c'

C E[exp -a1 T + T{eat/
2Ijuyv)I>l1]tc 1

C

- C exp -a 1T + C P{Iy( -+4v) >eaT/ 2 Iv>vi(u) u<t/C21

< C exp -alT + C e-aT/2 E{ ..( +v)I Iv>vl,(u)ut/c21

< C exp -a1 .
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By combining the above estimates, we get that the integral in II

is bounded in absolute value by C exp -a1 (v-v1 +T) and, consequently,

II = O( 2).

The component I is also O(E2 ) but not uniformly in yC(t).

Bound the inner integral of I by

IdT EB) < Ec f dTIEc 2 BI -III.

0 0

By the arguments connected with the bound on jfl(t) I, we get the

bound

III < Cc 2 Et[l + max(0, logl (mv)1)]-
c

Using the concavity of max(0, log!y[),

III < Cc2[1 + max(0, logi E(t)1)]-

Since v1 < C max(O, loggc (t)j), we have that

e2 2(A17) If2 (t)I < Cc [1 + max(O,logW:,(t)I] 2

Furthermore, it can be shown that f2(.) E 3(Ac) and that

Af(8 (t),t) - Af'(t) equals the term obtained by holding e^'(-)

constant plus the term obtained by holding t constant. (in the

calculation of the "derivative" of f2(0 In particular,
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Af(t) =[negative of first term of (AlO) + Acf(Oc(tt)]

+ (term whose p-lim equal zero).C-0
OL-0

The first term is, of course, just -FE (t). The latter (p-lim = 0)
C

term is f6 (et)g (s(tO),t, 5 (t)/s)/s = f (§,t)6, where 6 =2,x ' t 2, x ' '

6 Wt)and the f is the derivative with respect to the 0 argu-

ment. It can be shown that this derivative can be taken under

the integral sign in (A15). The components of the derivative which

involve fxxx are uniformly bounded by O(e). The other components

are of the form

CJ[~fxcLxQ+ Ecxx - E - Ef 9 ]d~dv g

with the obvious arguments for the functions. It is treated similar-

ly to the way (A16) was treated and is bounded by (A17) but with
2

c/a replacing e

Step 6. By combining the above estimates with f5 = f + f+ f2

(a/ax denotes a/ae, as usual),

p-lim[f (t) - f(se0(t),t)] = 0

p-lim[if I(t) - (2- + s (t, (t)) + A')f(8(t),t)] 0.

A very similar proof to that of [1, Section 6, part 2] yields

that A f(e,t) - f (6,t) in 2/a uniformly in 6 for each t. Then,t xx
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by [1, Theorem 1] (see the part of Appendix 2 above step 1), the

finite-dimensional distributions of {6(-)} converge to those of
the Markov process 0(-) with infinitesimal operator

/2 s(t,e(t)) 3 + in 2 32
7f o x a x 2

i.e., to (A4). This convergence of finite-dimensional distribu-

tions is good enough for many applications.

Step 7. Tightness. We skimp on details. Either [11, Lemma 11

or [10, Theorem 2] can be used. The boundedness recuired in [10,

Theorem 2], can be dropped here, since finite-dimensional distribu-

tions converge (for justification, see the remarks on p. 628 of

[121). The estimates that we need for the use of either of these

theorems are supplied by (A14), (A17): namely, we need that for

each T > 0

lim urn P{supjAefc(t)J > N} = 0,
N4 c-0 t<T

a-0

urn. P stp{f C(t)+fc(t)l >6>01 = 0, each 6 > 0,
£-.0 t<T

all of which can be proved from (A14), (A17), since for any con-

stant y > 0, the Gaussianness and stationarity imply that

lime 0 suPt<T Eyjj(t/c 2)I = 0 w. p. 1.
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Appendix 3

Getting from (A4) to (3.3) and then to (3.5) is ruch easier

than getting (A4), since we are working with It6 equations.

Over any finite interval [0,T], the measures in C[0,T] induced

by (A3) are absolutely continuous with respect to Wiener measure,

uniformly in a0 and w0 [8]. Thus the sequence given by (A4) and

parametrized by a2 is tight in C[O,-). Since the measure of any0

limit process must also be absolutely continuous with respect to

Wiener measure, it can be shown that any limit must have the

form (3.3) even though the drift is discontinuous. A "Skorokhod

imbedding" technique can be used to fill in the details; i.e., we

can choose a weakly convergent subsequence with limit denoted by

8(-) and we choose the probability space so that 6(-;a 0) 0 6(.)

uniformly as a 0 0 on each interval [0,T], w. p. 1. The form of

the limit of the chosen convergent subsequence can easily be

seen to be (3.3) by this operation. There can only be one limit

to the original sequence, since all limits have the form (3.3)

and the solution to (3.3) is unique in the sense of measure.

Now, we go from (3.3) to (3.5) as wo0 0 0. Again, Theorem 1

of I1) is used. As noted in the previous paragraph, the solutions

of (3.3) (parametrized by w0) are tight in C[0,-). write w0 
= p

and denote the corresponding solution to (3.3) by 6P. Then, for

each f( , ) e ! , we need only find a sequence fP() E J(AP)

for which (A5) (c, a replaced by p) holds. Define (subscripts

-I
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t, x denote the appropriate derivatives with respect to the

second and first argument of f(,-), resp.)

fp(t) = - EP f(6P(t+s),t)ds,

0

where EP denotes conditioning on O6P(u), u < t. Then fP(.) c -(ip)

and

ipfp(t) = p E~ft(OP(t+s),t)ds
0

+ 2 T/

=SP(t) + S P(t).

Because of the bounCedness of the drift coefficient in (3.3)

and the absolute continuity with respect to Wiener measure,

(A18) Ej0^P(t+s)-O^P(t) I -~ 0 as s -~ t, uniformly in t, p.

Thus

p-urn [fp(t)-f(6^p(t),t)j= 0,

p-urn [SP(t)-f (O^P(t),t)] =0.
P+0 1 t
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We need only evaluate the limit Of Byaplig(t'

2 ~ yapyn t'
lemma to Sp(-) and the process (*)

2wr/p 2 71/p
S2 (t) P Ep- jP(t , t) ln ds +E.~f(G(t+s)t

0 0

TrI ds

Also, p-lim [TP(t)-f (ep(t),t ln 2] .
p-0 1 xx t) a 0

We need only check that TP(-) has the correct (p-lim sense)2 p-).CO

limit. Using the Fourier series introduced in Section 3.1., write

TP,/ in the-form

2n/p

27t t j O(t+s) 4e^(t+s))ds
0

2 ir/p

+2 EP ds fx(eGP(t+s),t) [iLt~+ts+P~)

+r 2 Tir~~)+~ ) [Si (-1) (Ps)+ (t+s) +P (t+s) J

0

k=+l ~k+1 CO(2+) ( (-l+ cts(2)) pts+^(~)

=~~ I~k(t) OP~t +I()

ti'. - ______
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As earlier,

2 sin(O(t)_Op(t))] =0
p-lim [I (t)-fx(&P(t),t) snet-& )1 0

p4

By (A18), we can replace &P(t+s) by OP(t) in IP(t) without altering
2

the p-lim. By doing this, we see that p-lim IP(t) = 0 forp4.0 2

each N..

For each T0 > 0, T0 < T < -, there is a finite measure which

(uniformly in p and t e (T0 ,T]) dominates the measure of eP(t).

Using this and the fact that (the mean square value of the tail

of the Fourier series of signtcos(p(t+s)+y] E q(s) over

[t,t+p/2n])

2wr/p 00 k
I--Y C-l)k

2 k+l (2k+l) cos(2k+l) (p(t+s)+y) ds 0
0

uniformly in t, y and p, as N - =, yields that EjiP(t)j can be

made as small as desired by making N large. This and p-lim IP =

0, each N, yields p-lim[Ip + IP] = 0.

Next, choose a weakly convergent subsequence of the process

{8P(t), t>T 0>0}. Then 8P(T 0 ) converges weakly to a random var-

iable §(T0 ). As T0 - 0, the uniform absolute continuity with

respect to Wiener measure on bounded time intervals implies

that 6(T0 ) must converge to 8P() = 6(0) weakly as TO 4 0. This

and the uniqueness of the solution to (3.5) imply that {P(.)}

converges weakly to (3.5).
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